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In computing eigenvalues for a large finite element system, it has been observed that the
eigenvalue extractors produce eigenvectors that are in some sense more accurate than their
corresponding eigenvalues. In this paper, computational examples are presented to validate
this observation. From this observation, a patch type technique is developed based on the
eigenvector for one mesh quality to provide an eigenvalue error indicator. Tests show this
indicator to be both accurate and reliable.

This technique was first observed by Stephen and Steven for an error estimation for
buckling and has been extended in this paper to predict an error for the natural frequency
finite element analysis of a structure.
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1. INTRODUCTION

The finite element method discretizes a structure into relatively simple elements to
represent a more complex model. The prime source of error in the finite element analysis
is from this discretization, in which the displacements of the simple elements attempt to
represent a complex distorted shape.

It demonstrated using computational examples, by Stephen and Steven [1], that the
eigenvector solution to a finite element analysis is more accurate than the eigenvalue. It
is the eigenvalue solution that is required in a finite element analysis, so any error indicator
should use the more accurate eigenvector solution to determine an error estimate for the
analysis. There is no current mathematical proof that the eigenvector is more accurate than
the eigenvalue. Strang and Fix [2] base their error estimation on the eigenfunctions rather
than the eigenvectors. However, Dupont and Douglas [3] prove that the nodal quantities
in a linear static analysis are the accurate points and, as the linear static matrices are used
in vibration analysis, it can be expected that the nodal points will be the accurate
displacement locations for the vibration analysis.

Stephen and Steven [1] derived an error measure for the buckling finite element analysis
based on the more accurate eigenvector solution. In this paper the same principle is
extended to natural frequency finite element analysis, to estimate the error on the natural
frequency given by the square root of the eigenvalue.

The eigenvalue can be calculated from global elastic stiffness and mass matrices using
the Rayleigh quotient as follows:

l=
{x}T[K]{x}
{x}T[M]{x}. (1)
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Given that the eigenvector is a more accurate quantity than the eigenvalue, the
elastic stiffness and mass matrices will determine the level or accuracy of the solution.
These matrices are a result of the shape function and element type used in their
compilation.

2. PATCH RECOVERY

The patch recovery technique for improved stress retrieval of a statical analysis has been
researched for several years [4–7]. This procedure involves taking a patch of elements
around the point of concern in the finite element model and interpolating more accurate
solutions from the optimum accuracy stress locations on the elements in the patch. These
locations were generally found to be the Gauss points of the elements [8].

The finite element natural frequency analysis has the eigenvector being the more accurate
nodal quantity; hence a more accurate solution is achieved by interpolation over the patch
using the nodal displacement quantities. This procedure has been previously examined for
buckling finite element analysis [2, 3].

A finite element has sufficient nodal quantities to produce a vibrating shape equal to
its polynomial shape function. A high order polynomial function over the element which
is of higher order than the shape function will produce a more accurate vibrating shape.
This high order polynomial function can be easily produced by a least squares procedure
incorporating the eigenvector solution of the nodes of the element and the surrounding
elements in the patch.

For a one-dimensional model consisting of beam elements, a patch can have either two
elements or three elements, as shown in Figure 1. Each node in a beam element has two
degrees of freedom, being the displacement and the rotation of the node. A standard beam
element contains two nodes totalling four degrees of freedom. The order of the polynomial
shape function for this element is three.

For the case of the two-element patch, there is a total of six degrees of freedom.
A polynomial of order five can be interpolated over the central patch element. The
three-element patch has eight degrees of freedom for a polynomial of order seven over the
central patch element.

In two-dimensional structures consisting of membrane elements there can be
many elements and nodes in a patch: see Figure 2. Attempting to fit very high order
polynomials to the patch often leads to singularities in the matrix for the interpolation
function, or the interpolation function produces additional waves inside the element. A
higher order polynomial than the element shape function and a lower order polynomial
than using every node in the patch can be achieved efficiently using the method of least
squares.

Fitting a weighted least squares polynomial to the vibrating shape over the patch of
elements was found to produce better results than an ordinary least squares polynomial
approximation. The weighting produces a function that is more dependent on the

Figure 1. The beam element patches. (a) Two-element patch; (b) three-element patch.
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Figure 2. The 2-D element patch.

elemental nodes compared to the surrounding nodes in the patch. For elements on rigid
boundaries, where the exact value is known to be zero displacement, this weighting has
a more desirable effect. The optimal weighting for the least squares was found when each
term was multiplied by the square root of the distance to each node from the centroid of
the element in question.

It is assumed that the higher order polynomial function on each element gives a more
accurate result for the vibrating shape. To calculate a more accurate eigenvalue solution,
each element is divided into sub-elements, with nodal displacements obtained from the
higher order function shown in Figure 3.

A new eigenvalue l* can be calculated using the Rayleigh quotient at the sub-elemental
level. The Rayleigh quotient can be written as the summation of the sub-elemental
contributions, as

l*=$ s
N

i=1

s
N

j=1

ui (k)i, juj%>$ s
N

i=1

s
N

j=1

ui (m)i, juj%. (2)

In equation (2) there is a total of N degrees of freedom; ui represents the displacement
quantities for the patch nodes, with (k)i, j and (m)i, j representing the terms in the elastic
stiffness and mass matrices respectively. This result allows each element to have its patch
in the modal identified, the higher order function determined and the Rayleigh quotient
summations calculated. Upon the completion of this process for each element in the model,
the new eigenvalue can be calculated.

Figure 3. Sub-elements on the original patch element.
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3. HIGHER ORDER FUNCTIONS

The finite element shape functions are generally of a low polynomial order with respect
to the complex deformed shapes of vibrating structures. The simple one-dimensional
vibrating string has the deformed shape of a sine curve which, when using a Taylor series
expansion, is an infinite order polynomial expansion. The simple one-dimensional
elements, usually only having a linear shape function, can never perfectly represent this
deformed shape. These simple shape functions can only form linear intervals over the
deformed shape. Use of a quadratic function can better represent the curved shape of
the true deformed shape.

To examine the effect of the least squares interpolation function compared to the finite
element shape function, a sine curve was used as the exact deformed shape. The errors
were measured as norms with respect to the displaced shape and the first differential of
the function. The displacement error norm was calculated as

>eu >=g
h

0

(F(x)− f(x))2 dx

where F(x) is the exact displacement function, f(x) is the approximate displacement
function, being either the finite element shape function or the least squares interpolation,
and h is the length of the element. The differential error norm was similarly calculated
as

>eu'>=g
h

0

(F'(x)− f '(x))2 dx

The least squares displacement function was calculated over a patch of three elements.
This included the displacements for a total of four nodes. The weighting for the terms
in the least squares was taken as the inverse of the distance from the central element
centroid to the particular node squared. The patch over the three elements is represented
in Figure 4.

A cubic function could be calculated using these nodes; however, only a quadratic was
used as the Taylor series expansion of the sine curve results in non-even powers of the
polynomial terms, and a quadratic should be less accurate than a cubic function for
the sine curve. Hence this method shows significant improvement for the higher order
polynomials that are not part of the true displacement function.

Figure 4. The three element patch.
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Figure 5. The displacement error norm.

The system was analysed from 0 to p/2 over the sine displacement curve. The element
could be placed at any position on this interval. The element size was chosen to be 0·1p.
Differential sizes have the same relationship: only the magnitudes of the norms differed.

The displacement error norm is plotted in Figure 5.
The differential error norm is plotted in Figure 6. This value corresponds with the

stresses in the structure and translates to the numerator of the Rayleigh quotient, whereas
the displacements correspond with the denominator.

In both cases the error norm from the least squares function is less than the finite element
shape function, except at positions close to the start of the structure, where the values are
almost the same.

Hence using a higher order polynomial than the finite element shape functions defines
a more accurate displaced shape for both the displacement and first differential.

Figure 6. The differential error norm.
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4. ERROR MEASURE

The new eigenvalue obtained from the higher order polynomial equations on each
element is more accurate than the original finite element solution due to the higher order
function used to quantify the vibrating shape and smoothing process involved, with
application of a least squares fit of the displaced shapes to a larger region than the single
element of concern.

This improved solution is not exact, due to the true vibrating shape being even more
complex than the higher order polynomial, and that there is no guarantee that the higher
order polynomial is defined from exact quantities. The improved eigenvalue may best be
used as an error measure for the analysis.

The error for the finite element analysis is written as

ol =(lFE − l)/l. (3)

In most cases, the exact eigenvalue l is unknown, so it may be replaced with the improved
eigenvalue l* to give an error estimate based on this value to represent the actual error.
This error estimate is expressed as

o*= (lFE − l*)/l*. (4)

5. EXAMPLES

5.1.   

A simply supported beam was created using equal length beam elements: see Figure 7.
The structure was analysed for its natural frequencies with a variety of mesh sizes.

The exact eigenvalue for this problem for mode r is

l=(rp)4 EI
mL4. (5)

The natural frequency is the square root of the eigenvalue. The eigenvalue error is plotted
in Figure 8 for the first two modes with various mesh sizes. The figure also contains the
improved eigenvalue error and the measure of the finite element error using the improved
eigenvalue. For the patch recovery of the improved eigenvalue, each element in the models
examined was divided into five sub-elements.

Note that the improved eigenvalues have a higher convergence rate than the
convergence rate of the finite element eigenvalue alone. This indicates the high accuracy
of the eigenvector solution.

The error measure for both modes gives a highly accurate approximation to the true
error. The differences between the error of the eigenvector for finite element solution and
the error measure based upon the improved eigenvalue are virtually negligible.

Figure 7. The simply supported beam.
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Figure 8. Finite element and improved eigenvalue errors for the simply supported beam natural frequency.

5.2.  

A rigidly fixed base cantilevering beam was created using isoparametric, constant stress
membrane elements. The structure was analyzed for the first four natural frequencies
in bending, with a variety of mesh sizes. The Young’s modulus and density of this
material used to model the structure was set to unity. The Poisson ratio was 0·25. This
structure is shown in Figure 9 and the first four bending vibration modes are shown in
Figures 10(a)–(d).

Natural frequency analysis using the finite element method can be performed using
either a consistent or a lumped mass matrix. The choice of the mass matrix can affect the
convergence of the analysis. As there are two types of mass matrices, the improved
eigenvalue was calculated using both types. The graphs of the errors in the finite element
and improved eigenvalues are plotted in Figures 11–18 for the first four mode bending
vibration modes, for both the consistent and lumped mass matrices. The finite element
error is based upon calculating the exact eigenvalue from a number of mesh refinements
and extrapolating the exact eigenvalue. The error measure is based upon the improved
eigenvalue from the patch recovery.

This process involves subdividing every element in the model into a specific number
of sub-elements. From discretization it is known that the higher the number of
elements is, the more accurate the solution will be. Increasing the number of sub-elements
also increases the time of computation of the new eigenvalue. The improved vibrating
surface will not be exact, as the higher order polynomial used cannot exactly represent
an even higher order function for the vibrating shape. Therefore, having infinitesimally

Figure 9. The cantilever beam model with and compressive load.
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Figure 10. The vibrating cantilever. (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

small sub-elements to achieve the exact shape of the new vibrating shape is of no real
benefit. A sub-mesh of 5×5 for the patch technique was used for each element in this
example.

Figure 11. Finite element analysis and improved eigenvalue errors for the cantilevering beam: consistent mass
matrix, mode 1.
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Figure 12. Finite element analysis and improved eigenvalue errors for the cantilevering beam: consistent mass
matrix, mode 2.

Figure 13. Finite element analysis and improved eigenvalue errors for the cantilevering beam: consistent mass
matrix, mode 3.

Figure 14. Finite element analysis and improved eigenvalue errors for the cantilevering beam: consistent mass
matrix, mode 4.
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Figure 15. Finite element analysis and improved eigenvalue errors for the cantilevering beam: lumped mass
matrix, mode 1.

Figure 16. Finite element analysis and improved eigenvalue errors for the cantilevering beam: lumped mass
matrix, mode 2.

Figure 17. Finite element analysis and improved eigenvalue errors for the cantilevering beam: lumped mass
matrix, mode 3.
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Figure 18. Finite element analysis and improved eigenvalue errors for the cantilevering beam: lumped mass
matrix, mode 4.

The improved eigenvalues for modes 1 and 2 for the consistent mass matrices and
mode 1 for the lumped matrices models produced an error measure almost identical
to the finite element analysis error.

The improved eigenvalues for modes 3 and 4 for the consistent mass matrices and
modes 2, 3 and 4 for the lumped mass matrices were not as accurate as the other lower
modes. However, the error measure gave a good estimate of the eigenvalue error for
the finite element analysis. This is due to the patch technique producing the improved
eigenvalues having a convergence rate opposite to that of the finite element analysis. For
example, if the finite element analysis converges to the exact solution from above, the patch
improved eigenvalue converges from below. As a result of this different convergence rate,
the error measure produced is a conservative value.

The patch recovery technique gave accurate estimations for both consistent and lumped
mass matrices analyses.

5.3.  

A portal frame consisting of membrane elements was analyzed with various element
subdivisions. Again isoparametric, constant stress, membrane elements were used to model
this structure, with the Young’s modulus and density of this material set to unity. The

Figure 19. The portal frame model from membrane elements.
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Figure 20. The vibrating portal frame. (a) Mode 1; (b) mode 2; (c) mode 3; (d) mode 4.

Poisson ratio was again 0·25. The structure is represented in Figure 19 and the vibrating
shapes are shown in Figures 20(a)–(d).

The eigenvalue for the finite element analysis and the improved value are plotted in
Figures 21–24. The error measure for the finite element analysis based on the improved
eigenvalue is also plotted in these figures.

Modes 1 and 3 produced improved eigenvalues that were quite accurate and gave
extremely good error measures for the finite element analysis. Modes 2 and 4 had improved

Figure 21. Finite element analysis and improved eigenvalue errors for the portal frame example: lumped mass
matrix, mode 1.
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Figure 22. Finite element analysis and improved eigenvalue errors for the portal frame example: lumped mass
matrix, mode 2.

eigenvalues that were similar in accuracy to the finite element analysis. However, as in
the cantilevering beam example, the improved eigenvalue converged to the exact solution
from the opposite way to the finite element eigenvalue. Hence conservative error estimates
were again produced.

6. COMMENTS

The finite element analysis eigenvalue error is calculated based upon the exact
solution. In most practical cases the exact solution cannot be found without several
analyses and extrapolation of the exact solution. This is time consuming and costly for
practical use. The error measure is based upon the improved eigenvalue using the
patch recovery technique. It needs only to examine the original finite element solution.
It is therefore a suitable method of estimating the eigenvalue error in a finite element
analysis.

Figure 23. Finite element analysis and improved eigenvalue errors for the portal frame example: lumped mass
matrix, mode 3.
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Figure 24. Finite element analysis and improved eigenvalue errors for the portal frame example: lumped mass
matrix, mode 4.

The error measure quite accurately estimates the finite element eigenvalue error.
This can be seen, as the error for the finite element analysis eigenvalue almost identically
coincides with the error measure.

To compute the improved eigenvalue using this technique in a vibration type finite
element analysis, one examines a patch of elements around each element individually.
A weighted least squares function is calculated for the displacement over the patch of
elements using the nodal point displacements given by the original finite element analysis.
The central element of the patch is subdivided into a more refined mesh and the nodal
displacements are calculated from the least squares function. Using this refined mesh, the
numerator and denominator of the Rayleigh quotient can be summed for each element.
When all elements in the original finite element have been examined in this manner, the
numerator can be divided by the denominator in the Rayleigh quotient to form a new
eigenvalue.

The best use of this new eigenvalue is as an error measure for the original finite element
analysis as the new eigenvalue is not guaranteed to be exact.

7. CONCLUSIONS

It has been demonstrated that the patch technique is suitable for obtaining an error
estimation for the eigenvalue of a finite element natural frequency analysis. The method
outlined in this paper has involved only beam and two-dimensional membrane elements.
Structural models using finite elements for plate vibration [9], plate buckling [10],
three-dimensional brick elements [11] and the vibration analysis using the finite strip
method [12].

The least squares technique was used as the method of finding a higher order function
than the finite element shape function for the vibrating shape over the elements. This
method was used as it is computationally inexpensive. However, there is no guarantee on
the shape producing a greatly improved result. Better interpolation procedures are required
for this method with far more complex deformed shapes.

To obtain an error estimate for the natural frequency of a structure analyzed using the
finite element method is relatively inexpensively achieved using the patch recovery
technique shown in this paper. The calculation of the eigenvalue error is performed by
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examining each element and a surrounding patch. This requires far less computational time
than the eigenvalue extraction process for most finite element models. The patch recovery
technique is not only effective but is also quite fast, and could be easily adopted by most
finite element analysis codes as a post-processor routine to indicate the effectiveness of the
finite element analysis.

ACKNOWLEDGMENTS

The first author is supported financially by the Australian Postgraduate Research
Award (Industry) in conjunction with G+D Computing of Sydney.

REFERENCES

1. D. B. S and G. P. S 1994 Research Report, FEARC-9402, Finite Element
Analysis Research Centre, University of Sydney. Buckling error estimation using a patch recovery
technique.

2. P. G. S and G. J. F 1973 An Analysis of the Finite Element Method. Englewood Cliffs,
NJ: Prentice-Hall.

3. J. D and T. D 1970 SIAM Journal for Numerical Analysis 4, 575–626. Galerkin
methods for parabolic problems.

4. E. H and J. S. C 1974 International Journal of Numerical Methods in Engineering
8, 461–480. Local and global smoothing of discontinuous finite element functions using a least
square method.

5. O. C. Z and J. Z. Z 1992 International Journal of Numerical Methods in Engineering
33, 1331–1364. The superconvergent patch recovery and a posteriori error estimates, part 1:
the recovery technique.

6. O. C. Z and J. Z. Z 1992 International Journal of Numerical Methods in Engineering
33, 1331–1364. The superconvergent patch recovery and a posteriori error estimates, part 2: error
estimates and adaptivity.

7. N.-E. W and X. D. L 1994 Communications in Numerical Methods in Engineering 10,
313–320. Superconvergent patch recovery of finite-element solution and a posteriori L2 norm
error estimate.

8. J. B 1976 International Journal of Numerical Methods in Engineering 10, 243–251. Optimal
stress location in finite element method.

9. D. B. S and G. P. S 1997 Engineering Computations, to be published. Error
estimation for natural frequency analysis using plate elements.

10. D. B. S and G. P. S 1996 Computers and Structures 61, 747–761. Error estimation
for plate buckling elements.

11. D. B. S and G. P. S 1997 Structural Engineering and Mechanics, to be published.
Natural frequency error estimation for 3D brick elements.

12. D. B. S and G. P. S 1997 Journal of Sound and Vibration 200, 139–149. Error
measures for the finite strip vibration analysis method.


